Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.

Identifieur interne : 000C03 ( Main/Exploration ); précédent : 000C02; suivant : 000C04

Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.

Auteurs : Mélanie K. Rich [Suisse] ; Pierre-Emmanuel Courty [Suisse, France] ; Christophe Roux [France] ; Didier Reinhardt [Suisse]

Source :

RBID : pubmed:28789611

Descripteurs français

English descriptors

Abstract

BACKGROUND

Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots.

RESULTS

We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins.

CONCLUSION

Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.


DOI: 10.1186/s12864-017-3988-8
PubMed: 28789611
PubMed Central: PMC5549340


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.</title>
<author>
<name sortKey="Rich, Melanie K" sort="Rich, Melanie K" uniqKey="Rich M" first="Mélanie K" last="Rich">Mélanie K. Rich</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Courty, Pierre Emmanuel" sort="Courty, Pierre Emmanuel" uniqKey="Courty P" first="Pierre-Emmanuel" last="Courty">Pierre-Emmanuel Courty</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Present address: Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Present address: Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reinhardt, Didier" sort="Reinhardt, Didier" uniqKey="Reinhardt D" first="Didier" last="Reinhardt">Didier Reinhardt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland. didier.reinhardt@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28789611</idno>
<idno type="pmid">28789611</idno>
<idno type="doi">10.1186/s12864-017-3988-8</idno>
<idno type="pmc">PMC5549340</idno>
<idno type="wicri:Area/Main/Corpus">000B73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B73</idno>
<idno type="wicri:Area/Main/Curation">000B73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B73</idno>
<idno type="wicri:Area/Main/Exploration">000B73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.</title>
<author>
<name sortKey="Rich, Melanie K" sort="Rich, Melanie K" uniqKey="Rich M" first="Mélanie K" last="Rich">Mélanie K. Rich</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Courty, Pierre Emmanuel" sort="Courty, Pierre Emmanuel" uniqKey="Courty P" first="Pierre-Emmanuel" last="Courty">Pierre-Emmanuel Courty</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Present address: Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Present address: Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reinhardt, Didier" sort="Reinhardt, Didier" uniqKey="Reinhardt D" first="Didier" last="Reinhardt">Didier Reinhardt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland. didier.reinhardt@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Ontology (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Petunia (genetics)</term>
<term>Petunia (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gene Ontology (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Petunia (génétique)</term>
<term>Petunia (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
<term>Petunia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Mycorhizes</term>
<term>Petunia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Petunia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Mycorhizes</term>
<term>Petunia</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Ontology</term>
<term>Mutation</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gene Ontology</term>
<term>Mutation</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28789611</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.</ArticleTitle>
<Pagination>
<MedlinePgn>589</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-017-3988-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots.</AbstractText>
<AbstractText Label="RESULTS">We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins.</AbstractText>
<AbstractText Label="CONCLUSION">Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rich</LastName>
<ForeName>Mélanie K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Courty</LastName>
<ForeName>Pierre-Emmanuel</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000, Dijon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roux</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reinhardt</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0003-3495-6783</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland. didier.reinhardt@unifr.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032306" MajorTopicYN="N">Petunia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="Y">GRAS transcription factor</Keyword>
<Keyword MajorTopicYN="Y">Petunia hybrida</Keyword>
<Keyword MajorTopicYN="Y">RAM1</Keyword>
<Keyword MajorTopicYN="Y">Symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28789611</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-017-3988-8</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-017-3988-8</ArticleId>
<ArticleId IdType="pmc">PMC5549340</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jul 17;10(7):e1004487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25032823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 03;14:333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 07;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):444-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Dec;169(4):2774-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Jun;97(6):925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):788-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25971550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Histochem. 1999;43(2):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10439213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 May 27;2(6):16074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27255838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:161-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4236-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1631-1645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Apr 25;26(8):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27020747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jan 18;2:15208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Aug;22(8):652-660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(5):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Oct 24;26(20):2770-2778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):854-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Feb 12;15(2):139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Jan;4(1):75-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Apr;11(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):130-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24343576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Aug;4(8):698-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Apr;162(1):156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Dec;15(6):691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 15;23(2):257-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(6):1115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Aug 17;25(16):2189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26234213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):470-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20804456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jul;47(7):807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1632-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Suisse</li>
</country>
<region>
<li>Bourgogne</li>
<li>Bourgogne-Franche-Comté</li>
<li>Canton de Fribourg</li>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Castanet-Tolosan</li>
<li>Dijon</li>
<li>Fribourg</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Rich, Melanie K" sort="Rich, Melanie K" uniqKey="Rich M" first="Mélanie K" last="Rich">Mélanie K. Rich</name>
</region>
<name sortKey="Courty, Pierre Emmanuel" sort="Courty, Pierre Emmanuel" uniqKey="Courty P" first="Pierre-Emmanuel" last="Courty">Pierre-Emmanuel Courty</name>
<name sortKey="Reinhardt, Didier" sort="Reinhardt, Didier" uniqKey="Reinhardt D" first="Didier" last="Reinhardt">Didier Reinhardt</name>
</country>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Courty, Pierre Emmanuel" sort="Courty, Pierre Emmanuel" uniqKey="Courty P" first="Pierre-Emmanuel" last="Courty">Pierre-Emmanuel Courty</name>
</region>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28789611
   |texte=   Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28789611" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020